Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Highly-ordered mesoporous titania thin films prepared via surfactant assembly on conductive indium-tin-oxide/glass substrate and its optical properties

Identifieur interne : 003F93 ( Main/Repository ); précédent : 003F92; suivant : 003F94

Highly-ordered mesoporous titania thin films prepared via surfactant assembly on conductive indium-tin-oxide/glass substrate and its optical properties

Auteurs : RBID : Pascal:10-0204541

Descripteurs français

English descriptors

Abstract

Highly ordered mesoporous titanium dioxide (titania, TiO2) thin films on indium-tin-oxide (ITO) coated glass were prepared via a Pluronic (P123) block copolymer template and a hydrophilic Ti02 buffer layer. The contraction of the 3D hexagonal array of P123 micelles upon calcination merges the titania domains on the TiO2 buffer layer to form mesoporous films with a mesochannel diameter of approximately 10 nm and a pore-to-pore distance of 10 nm. The mesoporous titania films on TiO2-buffered ITO/glass featured an inverse mesospace with a hexagonally-ordered structure, whereas the films formed without a TiO2 buffer layer had a disordered microstructure with submicron cracks because of non-uniform water condensation on the hydrophobic ITO/glass surface. The density of the mesoporous film was 83% that of a bulk Ti02 film. The optical band gap of the mesoporous titania thin film was approximately 3.4 eV, larger than that for nonporous anatase Ti02 (∼3.2 eV), suggesting that the nanoscopic grain size leads to an increase in the band gap due to weak quantum confinement effects. The ability to form highly-ordered mesoporous titania films on electrically conductive and transparent substrates offers the potential for facile fabrication of high surface area semiconductive films with small diffusion lengths for optoelectronics applications.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:10-0204541

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Highly-ordered mesoporous titania thin films prepared via surfactant assembly on conductive indium-tin-oxide/glass substrate and its optical properties</title>
<author>
<name sortKey="Uchida, Hiroshi" uniqKey="Uchida H">Hiroshi Uchida</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Materials and Life Sciences, Sophia University</s1>
<s2>Tokyo 102-8554</s2>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>Japon</country>
<placeName>
<settlement type="city">Tokyo</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Patel, Mehul N" uniqKey="Patel M">Mehul N. Patel</name>
<affiliation wicri:level="4">
<inist:fA14 i1="02">
<s1>Department of Chemical Engineering, Center for Nano- and Molecular Science and Technology, Texas Materials Institute, The University of Texas at Austin</s1>
<s2>Austin, TX 78712</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<settlement type="city">Austin (Texas)</settlement>
<region type="state">Texas</region>
</placeName>
<orgName type="university">Université du Texas à Austin</orgName>
</affiliation>
</author>
<author>
<name sortKey="May, R Alan" uniqKey="May R">R. Alan May</name>
<affiliation wicri:level="4">
<inist:fA14 i1="03">
<s1>Department of Chemistry and Biochemistry, Center for Nano- and Molecular Science and Technology, Texas Materials Institute, The University of Texas at Austin</s1>
<s2>Austin, TX 78712</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<settlement type="city">Austin (Texas)</settlement>
<region type="state">Texas</region>
</placeName>
<orgName type="university">Université du Texas à Austin</orgName>
</affiliation>
</author>
<author>
<name sortKey="Gupta, Gaurav" uniqKey="Gupta G">Gaurav Gupta</name>
<affiliation wicri:level="4">
<inist:fA14 i1="02">
<s1>Department of Chemical Engineering, Center for Nano- and Molecular Science and Technology, Texas Materials Institute, The University of Texas at Austin</s1>
<s2>Austin, TX 78712</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<settlement type="city">Austin (Texas)</settlement>
<region type="state">Texas</region>
</placeName>
<orgName type="university">Université du Texas à Austin</orgName>
</affiliation>
</author>
<author>
<name sortKey="Stevenson, Keith J" uniqKey="Stevenson K">Keith J. Stevenson</name>
<affiliation wicri:level="4">
<inist:fA14 i1="03">
<s1>Department of Chemistry and Biochemistry, Center for Nano- and Molecular Science and Technology, Texas Materials Institute, The University of Texas at Austin</s1>
<s2>Austin, TX 78712</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<settlement type="city">Austin (Texas)</settlement>
<region type="state">Texas</region>
</placeName>
<orgName type="university">Université du Texas à Austin</orgName>
</affiliation>
</author>
<author>
<name sortKey="Johnston, Keith P" uniqKey="Johnston K">Keith P. Johnston</name>
<affiliation wicri:level="4">
<inist:fA14 i1="02">
<s1>Department of Chemical Engineering, Center for Nano- and Molecular Science and Technology, Texas Materials Institute, The University of Texas at Austin</s1>
<s2>Austin, TX 78712</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<settlement type="city">Austin (Texas)</settlement>
<region type="state">Texas</region>
</placeName>
<orgName type="university">Université du Texas à Austin</orgName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">10-0204541</idno>
<date when="2010">2010</date>
<idno type="stanalyst">PASCAL 10-0204541 INIST</idno>
<idno type="RBID">Pascal:10-0204541</idno>
<idno type="wicri:Area/Main/Corpus">004647</idno>
<idno type="wicri:Area/Main/Repository">003F93</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0040-6090</idno>
<title level="j" type="abbreviated">Thin solid films</title>
<title level="j" type="main">Thin solid films</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Anatase</term>
<term>Arrays</term>
<term>Block copolymer</term>
<term>Buffer layer</term>
<term>Coatings</term>
<term>Electronic properties</term>
<term>Ellipsometry</term>
<term>Energy gap</term>
<term>Glass</term>
<term>Grain size</term>
<term>Hexagonal lattices</term>
<term>Indium oxide</term>
<term>Mesoporosity</term>
<term>Micelles</term>
<term>Microstructure</term>
<term>Nanometer scale</term>
<term>Optical properties</term>
<term>Optoelectronics</term>
<term>Photonic band gap</term>
<term>Porous materials</term>
<term>Quantum confinement</term>
<term>Quantum effect</term>
<term>Scattering lengths</term>
<term>Self-assembly</term>
<term>Sol-gel process</term>
<term>Surface area</term>
<term>Surfactants</term>
<term>Template reaction</term>
<term>Thin films</term>
<term>Tin oxide</term>
<term>Titanium oxide</term>
<term>Vapor condensation</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Mésoporosité</term>
<term>Couche mince</term>
<term>Agent surface</term>
<term>Propriété optique</term>
<term>Verre</term>
<term>Copolymère séquencé</term>
<term>Réaction dirigée</term>
<term>Couche tampon</term>
<term>Réseau hexagonal</term>
<term>Réseau(arrangement)</term>
<term>Micelle</term>
<term>Microstructure</term>
<term>Condensation</term>
<term>Bande interdite photonique</term>
<term>Matériau poreux</term>
<term>Oxyde de titane</term>
<term>Oxyde d'indium</term>
<term>Oxyde d'étain</term>
<term>Anatase</term>
<term>Echelle nanométrique</term>
<term>Grosseur grain</term>
<term>Bande interdite</term>
<term>Propriété électronique</term>
<term>Confinement quantique</term>
<term>Effet quantique</term>
<term>Aire superficielle</term>
<term>Longueur diffusion</term>
<term>Optoélectronique</term>
<term>Procédé sol gel</term>
<term>Revêtement</term>
<term>Autoassemblage</term>
<term>Ellipsométrie</term>
<term>Substrat verre</term>
<term>TiO2</term>
<term>7866</term>
<term>6855J</term>
<term>7320</term>
<term>8115L</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Verre</term>
<term>Condensation</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Highly ordered mesoporous titanium dioxide (titania, TiO
<sub>2</sub>
) thin films on indium-tin-oxide (ITO) coated glass were prepared via a Pluronic (P123) block copolymer template and a hydrophilic Ti0
<sub>2</sub>
buffer layer. The contraction of the 3D hexagonal array of P123 micelles upon calcination merges the titania domains on the TiO
<sub>2</sub>
buffer layer to form mesoporous films with a mesochannel diameter of approximately 10 nm and a pore-to-pore distance of 10 nm. The mesoporous titania films on TiO
<sub>2</sub>
-buffered ITO/glass featured an inverse mesospace with a hexagonally-ordered structure, whereas the films formed without a TiO
<sub>2</sub>
buffer layer had a disordered microstructure with submicron cracks because of non-uniform water condensation on the hydrophobic ITO/glass surface. The density of the mesoporous film was 83% that of a bulk Ti0
<sub>2</sub>
film. The optical band gap of the mesoporous titania thin film was approximately 3.4 eV, larger than that for nonporous anatase Ti0
<sub>2</sub>
(∼3.2 eV), suggesting that the nanoscopic grain size leads to an increase in the band gap due to weak quantum confinement effects. The ability to form highly-ordered mesoporous titania films on electrically conductive and transparent substrates offers the potential for facile fabrication of high surface area semiconductive films with small diffusion lengths for optoelectronics applications.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0040-6090</s0>
</fA01>
<fA02 i1="01">
<s0>THSFAP</s0>
</fA02>
<fA03 i2="1">
<s0>Thin solid films</s0>
</fA03>
<fA05>
<s2>518</s2>
</fA05>
<fA06>
<s2>12</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Highly-ordered mesoporous titania thin films prepared via surfactant assembly on conductive indium-tin-oxide/glass substrate and its optical properties</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>UCHIDA (Hiroshi)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>PATEL (Mehul N.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>MAY (R. Alan)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>GUPTA (Gaurav)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>STEVENSON (Keith J.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>JOHNSTON (Keith P.)</s1>
</fA11>
<fA14 i1="01">
<s1>Department of Materials and Life Sciences, Sophia University</s1>
<s2>Tokyo 102-8554</s2>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Department of Chemical Engineering, Center for Nano- and Molecular Science and Technology, Texas Materials Institute, The University of Texas at Austin</s1>
<s2>Austin, TX 78712</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Department of Chemistry and Biochemistry, Center for Nano- and Molecular Science and Technology, Texas Materials Institute, The University of Texas at Austin</s1>
<s2>Austin, TX 78712</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA20>
<s1>3169-3176</s1>
</fA20>
<fA21>
<s1>2010</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>13597</s2>
<s5>354000181985160060</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2010 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>79 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>10-0204541</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Thin solid films</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Highly ordered mesoporous titanium dioxide (titania, TiO
<sub>2</sub>
) thin films on indium-tin-oxide (ITO) coated glass were prepared via a Pluronic (P123) block copolymer template and a hydrophilic Ti0
<sub>2</sub>
buffer layer. The contraction of the 3D hexagonal array of P123 micelles upon calcination merges the titania domains on the TiO
<sub>2</sub>
buffer layer to form mesoporous films with a mesochannel diameter of approximately 10 nm and a pore-to-pore distance of 10 nm. The mesoporous titania films on TiO
<sub>2</sub>
-buffered ITO/glass featured an inverse mesospace with a hexagonally-ordered structure, whereas the films formed without a TiO
<sub>2</sub>
buffer layer had a disordered microstructure with submicron cracks because of non-uniform water condensation on the hydrophobic ITO/glass surface. The density of the mesoporous film was 83% that of a bulk Ti0
<sub>2</sub>
film. The optical band gap of the mesoporous titania thin film was approximately 3.4 eV, larger than that for nonporous anatase Ti0
<sub>2</sub>
(∼3.2 eV), suggesting that the nanoscopic grain size leads to an increase in the band gap due to weak quantum confinement effects. The ability to form highly-ordered mesoporous titania films on electrically conductive and transparent substrates offers the potential for facile fabrication of high surface area semiconductive films with small diffusion lengths for optoelectronics applications.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B70H66</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B60H55J</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B70C20</s0>
</fC02>
<fC02 i1="04" i2="3">
<s0>001B80A15L</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Mésoporosité</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Mesoporosity</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Mesoporosidad</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Couche mince</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Thin films</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Agent surface</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Surfactants</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Propriété optique</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Optical properties</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Verre</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Glass</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Copolymère séquencé</s0>
<s2>NK</s2>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Block copolymer</s0>
<s2>NK</s2>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Copolímero secuencia</s0>
<s2>NK</s2>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Réaction dirigée</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Template reaction</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Reacción dirigida</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Couche tampon</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Buffer layer</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Capa tampón</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Réseau hexagonal</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Hexagonal lattices</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Réseau(arrangement)</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Arrays</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Micelle</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Micelles</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Microstructure</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Microstructure</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Condensation</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Vapor condensation</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Bande interdite photonique</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Photonic band gap</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Matériau poreux</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Porous materials</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Oxyde de titane</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Titanium oxide</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Titanio óxido</s0>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Oxyde d'indium</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Indium oxide</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Indio óxido</s0>
<s5>17</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Oxyde d'étain</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Tin oxide</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Estaño óxido</s0>
<s5>18</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Anatase</s0>
<s5>29</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Anatase</s0>
<s5>29</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Anatasa</s0>
<s5>29</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>Echelle nanométrique</s0>
<s5>30</s5>
</fC03>
<fC03 i1="20" i2="3" l="ENG">
<s0>Nanometer scale</s0>
<s5>30</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>Grosseur grain</s0>
<s5>31</s5>
</fC03>
<fC03 i1="21" i2="3" l="ENG">
<s0>Grain size</s0>
<s5>31</s5>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>Bande interdite</s0>
<s5>32</s5>
</fC03>
<fC03 i1="22" i2="3" l="ENG">
<s0>Energy gap</s0>
<s5>32</s5>
</fC03>
<fC03 i1="23" i2="X" l="FRE">
<s0>Propriété électronique</s0>
<s5>33</s5>
</fC03>
<fC03 i1="23" i2="X" l="ENG">
<s0>Electronic properties</s0>
<s5>33</s5>
</fC03>
<fC03 i1="23" i2="X" l="SPA">
<s0>Propiedad electrónica</s0>
<s5>33</s5>
</fC03>
<fC03 i1="24" i2="X" l="FRE">
<s0>Confinement quantique</s0>
<s5>34</s5>
</fC03>
<fC03 i1="24" i2="X" l="ENG">
<s0>Quantum confinement</s0>
<s5>34</s5>
</fC03>
<fC03 i1="24" i2="X" l="SPA">
<s0>Confinamiento cuántico</s0>
<s5>34</s5>
</fC03>
<fC03 i1="25" i2="X" l="FRE">
<s0>Effet quantique</s0>
<s5>35</s5>
</fC03>
<fC03 i1="25" i2="X" l="ENG">
<s0>Quantum effect</s0>
<s5>35</s5>
</fC03>
<fC03 i1="25" i2="X" l="SPA">
<s0>Efecto cuántico</s0>
<s5>35</s5>
</fC03>
<fC03 i1="26" i2="3" l="FRE">
<s0>Aire superficielle</s0>
<s5>36</s5>
</fC03>
<fC03 i1="26" i2="3" l="ENG">
<s0>Surface area</s0>
<s5>36</s5>
</fC03>
<fC03 i1="27" i2="3" l="FRE">
<s0>Longueur diffusion</s0>
<s5>37</s5>
</fC03>
<fC03 i1="27" i2="3" l="ENG">
<s0>Scattering lengths</s0>
<s5>37</s5>
</fC03>
<fC03 i1="28" i2="X" l="FRE">
<s0>Optoélectronique</s0>
<s5>38</s5>
</fC03>
<fC03 i1="28" i2="X" l="ENG">
<s0>Optoelectronics</s0>
<s5>38</s5>
</fC03>
<fC03 i1="28" i2="X" l="SPA">
<s0>Optoelectrónica</s0>
<s5>38</s5>
</fC03>
<fC03 i1="29" i2="3" l="FRE">
<s0>Procédé sol gel</s0>
<s5>39</s5>
</fC03>
<fC03 i1="29" i2="3" l="ENG">
<s0>Sol-gel process</s0>
<s5>39</s5>
</fC03>
<fC03 i1="30" i2="3" l="FRE">
<s0>Revêtement</s0>
<s5>40</s5>
</fC03>
<fC03 i1="30" i2="3" l="ENG">
<s0>Coatings</s0>
<s5>40</s5>
</fC03>
<fC03 i1="31" i2="3" l="FRE">
<s0>Autoassemblage</s0>
<s5>41</s5>
</fC03>
<fC03 i1="31" i2="3" l="ENG">
<s0>Self-assembly</s0>
<s5>41</s5>
</fC03>
<fC03 i1="32" i2="3" l="FRE">
<s0>Ellipsométrie</s0>
<s5>42</s5>
</fC03>
<fC03 i1="32" i2="3" l="ENG">
<s0>Ellipsometry</s0>
<s5>42</s5>
</fC03>
<fC03 i1="33" i2="3" l="FRE">
<s0>Substrat verre</s0>
<s4>INC</s4>
<s5>46</s5>
</fC03>
<fC03 i1="34" i2="3" l="FRE">
<s0>TiO2</s0>
<s4>INC</s4>
<s5>47</s5>
</fC03>
<fC03 i1="35" i2="3" l="FRE">
<s0>7866</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="36" i2="3" l="FRE">
<s0>6855J</s0>
<s4>INC</s4>
<s5>72</s5>
</fC03>
<fC03 i1="37" i2="3" l="FRE">
<s0>7320</s0>
<s4>INC</s4>
<s5>73</s5>
</fC03>
<fC03 i1="38" i2="3" l="FRE">
<s0>8115L</s0>
<s4>INC</s4>
<s5>74</s5>
</fC03>
<fN21>
<s1>137</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003F93 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 003F93 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:10-0204541
   |texte=   Highly-ordered mesoporous titania thin films prepared via surfactant assembly on conductive indium-tin-oxide/glass substrate and its optical properties
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024